If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2-60y-80=0
a = 20; b = -60; c = -80;
Δ = b2-4ac
Δ = -602-4·20·(-80)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-100}{2*20}=\frac{-40}{40} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+100}{2*20}=\frac{160}{40} =4 $
| -7z=18 | | -5=-25x-14x-50 | | (2x/3)-7=8 | | -5=-25x+14x-50 | | 1/4(4f-8)=f-2 | | 5z–2z=18 | | 6y*8=7y-12 | | 25=-60v+6v-18 | | 4x+9x-8x-5=5 | | 0=-4.9t^2-3.9t+10 | | -h+17=-3h–5 | | 4+n-9=-9+1+2n/12 | | (0.0297-x/0.0297+x)=0.1 | | 9n-3=69 | | 12+8y=4y | | 60y-21=8y-16 | | 19t+19=18t | | -4z+60+2=-2 | | 9+3a=1+2a | | 4(5-x)=8(3×+10) | | 93a=1+2a | | -4(z–15)+2=-2 | | 23=y-1 | | 2z^2+18z+28=0 | | 35x-5=-3x+4 | | 10z-5=60 | | 6+3=h | | 4^(x+1)+44=300 | | -5k-8=-23 | | 7/3x-1/3=-1/5x+4 | | 2a+5=2a-7 | | 5^x+12^x=14^x |